Quantum algorithm for an additive approximation of Ising partition functions
نویسندگان
چکیده
منابع مشابه
A quantum algorithm for additive approximation of Ising partition functions
We investigate quantum computational complexity of calculating partition functions of Ising models. We construct a quantum algorithm for an additive approximation of Ising partition functions on square lattices. To this end, we utilize the overlap mapping developed by Van den Nest, Dür, and Briegel [Phys. Rev. Lett. 98, 117207 (2007)] and its interpretation through measurementbased quantum comp...
متن کاملQuantum Commuting Circuits and Complexity of Ising Partition Functions
Abstract Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal in the sense of standard quantum computation. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy (PH) collapses at the third level, which is highly impl...
متن کاملApproximation of an additive mapping in various normed spaces
In this paper, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the following Cauchy-Jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem t...
متن کاملAn Unified FPT Algorithm for Width of Partition Functions
During the last decades, several polynomial-time algorithms have been designed that decide whether a graph has tree-width (resp., path-width, branch-width, etc.) at most k, where k is a fixed parameter. Amini et al. (Discrete Mathematics’09) use the notions of partitioning-trees and partition functions as a generalized view of classical decompositions of graphs, namely tree decomposition, path ...
متن کاملThe complexity of approximating complex-valued Ising and Tutte partition functions with applications to quantum simulation
We study the complexity of approximately evaluating the Ising and Tutte partition functions with complex parameters. Our results are motivated by the study of the quantum complexity classes BQP and IQP. Recent results show how to encode quantum computations as evaluations of partition functions. These results rely on interesting and deep results about quantum computation in order to obtain hard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2014
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.90.022304